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Summary

Free-surface gravity flows are stationary points of a functional J when the problem is formulated variationally.

Here we are concerned with the problem of determining the nature of the stationary point, that is, whether it
is a minimum, a maximum, a saddle point or whether a singularity occurs. This is a problem of both theoretical
and computational importance.

Within a variational approximation of shallow-water type developed by the authors, we prove some new
results on the problem. The analysis is carried out by studying the second variation of the functional J and the
corresponding Jacobi’s equation.

Reference is also made to numerical experiments which confirm the findings. The experiments also suggest
that such findings may well extend to flows outside the class of shallow-water flows governed by the model used
in the analysis.

1. Introduction

Variational formulations of free-surface flows have become increasingly popular in recent
years. In such formulations, solutions of the physical problem are stationary points of a
governing functional J. One of the principal reasons for this development is that
variational principles may effectively be used to treat the non-linearities involved when
computing the stationary point numerically. This is normally achieved in conjunction with
numerical techniques such as the Finite Element Method, the Kantorovich Method, etc.
Steady ideal flows with a free surface under gravity were formulated variationally by
O’Carroll and Harrison [1] in 1976. They expressed the problem in terms of a functional
J(h(x), ¥(x,y)), where h(x) determines the free-surface position and Y(x, y) is a
volumetric stream function that governs the internal flow problem. For the last few years
these variational formulations have become an established approach to solving free-surface
gravity flows numerically (e.g. [2,3,4,10], [11]). Iterative techniques are invariably used and
because of their obvious advantages variants of Newton’s Method are widely utilised.
The problem of determining a priori whether the stationary point is a minimum, a
maximum or of mixed type (saddle) requires attention. This is a topic of obvious
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theoretical importance in its own right. Moreover, from the computational point of view,
information about the nature of the stationary point to be computed numerically may be
relevant. For instance, if the stationary point is known to be a minimum, the computa-
tional problem is that of optimisation and any library subroutine may prove satisfactory.
For saddle points however, the situation is somewhat different and not all optimisation
techniques can be used.

Analysis of the second variation of J, denoted by 82/, can provide the required
information regarding the nature of the stationary point of J, except for the case when 8%/
is identically zero. But even the singular case gives valuable information, since this
corresponds to a singularity of the Hessian matrix in the discrete version of the problem.
It is then expected that any Newton’s method will experience ill-conditioning when
attempting to compute the stationary point.

For fixed-boundary problems it is well known that the functional takes a proper
minimum at the solution . However, the variation of the boundary position is more
complex. Among uniform flows this may be minimum-like for shallow (rapid) flows but
maximum-like for deep (tranquil) flows [12]. Some more general observations regarding
the nature of the stationary point were made in [7]. These are based on numerical
computation of the stationary point and subsequent evaluation of the Hessian matrix at
the point. By testing the definiteness of this matrix at the computed solution we were able
to find out its type. The limitations of this approach are obvious and an analysis of the
continuous case in terms of the second variation is needed.

In this paper, which is based on the thesis [3] (see Chapter 6), we present some new
results of the continuous problem. The analysis is carried out by studying the quadratic
functional 82J. The problem is expressed in terms of an approximation of shallow-water
type [5] which facilitates the task of deriving an explicit expression for the second
variation of J. The conclusions are thus strictly applicable to shallow-water flows only.
Numerical evidence however, suggests that some of the results may extend to more general
flows.

It is shown that no stationary point can be a maximum and therefore the only possible
stationary points are minima and of mixed type. A reference depth 4, and a reference
wavelength A, are introduced. It is found that every flow whose free-surface height does
not exceed 4, is a minimum, The length A, determines locations of the end boundary for
which a wave of infinitesimal amplitude and wavelength A, makes 8/ singular. This is
significant for numerical computations. We also show that waves whose surface profiles lie
entirely above h, are (i) saddle points in a channel of length greater than L,, and (ii)
minima in a channel of length less than L. The lengths L,, and L are related to the
amplitude of the wave and satisfy L <A,/2 < Ly,.

There are still cases in the class of shallow-water flows that remain to be classified. It is
also desirable to extend the analysis of the second variation of J for fuller two-dimen-
sional free-surface flows.

2. Variational formulation of the problem

Here we are concerned with non-viscous flows with a free surface under gravity which are
steady, two-dimensional, incompressible and irrotational. In terms of a volumetric stream
function Y (x, y) both the bed and the free surface are streamlines. A typical flow domain
is shown in Fig. 1, where H, measures the stagnation level (total head), / gives the length
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Figure 1. Flow domain with a free surface under gravity.

of the flow region in the x-direction, 5(x) is the position of the prescribed bed profile and
h(x) determines the position of the free surface.

Under the stated physical assumptions it can be shown [1] that the coupled problems of
finding A (x) and ¥ /(x, y) are governed by the stationary conditions of the functional

J((x), 9(x.)) = [ax [* 74 (99) v )ay 1)

(x)

with respect to both arguments, together with the constraints
= Q (the prescribed discharge) on BD,

()
0 on FS.

In expressions (1)—(2) all quantities have been non-dimensionalised with respect to
length H, and time (H,/g)"/?, where g denotes the acceleration due to gravity. This
variational formulation has been the starting point for several numerical computations
(e.g. [2,3]).

Here we use an approximation of shallow-water type presented in [S], whereby ¥/(x, y)
in Eqn. (1) is assumed to vary linearly in the y-direction from bed to surface. That is, ¢ is
given as follows

¥(x,y) = Q{b(x) +h(x)-y}/h(x). (3)

Direct evaluation of the integral with respect to y in (1) in terms of ¢ as given by Eqn.
(3) gives

J(h(x)) =f0’F(x', h(x), k' (x))dx. (4)
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The function F in (4) is given by
F(x,h,h)= Q‘!{h’2 +3b'k + 36+ 3) /6h> — (h> + 2bh) /2 (5)

where the argument x has been dropped, which will be done wherever convenient.
It is easy to show that the stationary equation of J as given by (4) and (5) is

2007 =h? = 3{b7+b"h+1+2h*(b+h)/Q%}. (6)

Equation (6) is the Euler-Lagrange equation which applies whatever end boundary
conditions are used. If the end values of 4 are free, then there are additional natural
boundary conditions as usual.

In the case of a flat bed solutions of this equation can be given in terms of cnoidal
functions, but our main concern here is the characterisation of solutions regarded as
stationary points of J. We shall carry out the analysis in terms of the second variation of
J. This is a quadratic functional and will be derived in the following section.

3. The second variation of J for the shallow-water model

Following Gelfand and Fomin [8], the second variation of J as given by (4) can be
expressed as

8% (w) =fl( pw? + qw?)dx
0
when A(x) is given a variation w(x) and the curves i(x) have fixed end points, i.e.

h(0)= A and A(/) = B. The functions w(x) satisfy the homogeneous boundary conditions.
The functions p(x) and g(x) are as follows

d
P(x)=%Fh’h” q(x) =%(th_thh’)

where F= F(x, h(x), h’(x)) is given by Eqn. (5). (There is a slight misprint in [8] in the
expression for ¢(x), page 102, Eqn. (11)).

The functions p and ¢ are functions of x via h and as indicated previously, the
argument x will be omitted wherever convenient. After differentiating we find that

p(x)=Q%/6h,

g(x)=Q*(2hh" — 20 + 6 + 66> + 3b”h) /12h° — L. (8)
Now we are in a position to prove the first result.
THEOREM 1: Within the stated shallow-water model with positive flow depth h(x) for a

channel with arbitrary bed profile and fixed end depths h(0), h(!) a stationary point of J can
not be a maximum.



199

PrOOF: The proof follows immediately from the theory of second variations ([8] page 115),
since a necessary condition for a solution A(x) to give a maximum for J is that p(x) <0,
the Legendre condition. In fact, the strengthened Legendre’s condition for a minimum
( p(x) > 0) is satisfied for every solution A(x), but this is neither necessary nor sufficient
on its own for a minimum.

Before proceeding we recall some standard definitions and theorems about the theory
of the second variation.

DEFINITION 1: The Jacobi’s equation of J is defined as
d ,
- a ( pw ) +gw=0.

In fact, this is the Euler equation of the quadratic functional 82/, the second variation
of J.

DEFINITION 2: A point /, € (0, /] is said to be conjugate to the point 0 (zero) if the
initial-value problem

d , _
-——x(pu )+qu——0,
u(O =0, u'(0)= 1

(9)

has a solution with
u(ly)=u(0)=0.

The boundary conditions in (9) are different from the homogeneous boundary conditions
to be satisfied by the admissible functions in the domain of 8§2J. This is to exclude trivial
solutions of the Jacobi’s equation.

The following are necessary conditions for a weak minimum for J.

(N1) Legendre’s condition:
p(x)>= 0 at every point of the curve h(x).

(N2) Jacobi’s condition:
The open interval (0, /) has no points conjugate to zero.
The following is a sufficient set of conditions for a weak minimum.

(S1) Strengthened Legendre condition:
p(x)> 0 at every point of the curve k(x).

(82) The strengthened Jacobi’s condition:
The interval (0, /] contains no points conjugate to zero.

Both (S1) and (S2) have to be satisfied simultaneously. The proof is given in [8], pp.
116-117.

We now return to the specific problem of open-channel flow. It is worth remarking that



Figure 2. Plot of r(h) as given by Eqn. (11).

since condition (S1) is satisfied in every case the nature of the extremal depends entirely
on the zeros of the solution of initial-value problem (9).

Henceforth consider only the case of a flat bed with b(x)= —1 in the non-di-
mensionalised variables. Then by substituting U(x)=u(x)/{/p(x) the initial-value prob-
lem (9) is equivalent to

U”(x)+k(h(x))U(x)=0,

U(0)=0, U'(0)=c,>0 (10)

where
k(h)=r(k)/s(h) with
r(h)=6n*—2h* - 30Q7%, (11)
s(h)=4h?Q%/3.
Notice that the sign and zeros of k(h) are those of the cubic r(h) (see Fig. 2) and the

following properties are easily derived:
(i) k(h) has only one real root h for 0 < Q% < 8,/27 with

0<8, <0 <hy,<2/3<8,<1, (12)
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where S, and S, are the two real solutions in (0, 1) of the cubic 2A%(h— 1)+ Q%2=0
governing uniform horizontal flows; S, is the depth of rapid uniform flow and S, the
depth of the tranquil uniform flow. For Q?=8,27, S, = Q% =h,= S, =2/3, and hence
h, liesin (1/3,2/3].

(ii) Given two values of the discharge Q, and Q, satisfying 0 < Q% < Q% < 8/27 we
have that 1/3 < hy; < hy, <2/3 where hy; and hg, are the real roots of k(h) for Q and
Q3 respectively.

(i) k(h)<0forO<h < hyand k(h)> Ofor hy <h < 1. Inparticular 0 < k(h,) < k(h,)
for hy<h, <h,.

It is fortunate that the use of the stationary equation (6) leads to an expression for k()
that is independent of derivative terms. This facilitates the analysis of the variable-coeffi-
cient initial-value problem (10) considerably. For the raised-bed case however, the
situation is different and the analysis more complicated.

Definition 2, concerning the existence (or non-existence) of conjugate points to zero,
will become of crucial importance in determining the nature of the stationary point. The
problem will be reduced to a problem of zeros of solutions of the initial-value problem
(10).

4. Classification of stationary points

From the result of Theorem 1 we know that a non-singular stationary point is either a
minimum or a saddle. The method of classifying relies upon the features of the variable
coefficient k (h(x)) in the initial-value problem (10). As observed the main characteristics
such as sign and zeros depend on the cubic r( k) (see Fig. 2).

There are two principal cases given by intervals (0, &) where & is negative and (h,, 1)
where k is positive. The point h,, where k vanishes, represents a reference depth of flow
that separates types of stationary points in the present work. When k is non-positive we
are able to classify all flows lying entirely below 4, as minima. This result is independent
of the channel length /. When k is positive we define a length function L(h)=n//k(h)
in the interval (h,, 1), i.e.

L(h)=27hQ/[3(6n* —2h* = 30%)]'/*
forhy<h_<h(x)<hy<l. (13)

Here h,, and h,, denote the minimum and maximum depth of flow for 4(x). Figure 3
illustrates the function L ().

A solution h(x) satisfying the restriction imposed in (13) will have two reference
lengths L, = L(hy) and L, = L(h,,) associated with it (note the reversed subscipts). &,
represents the trough and 4, the crest and then the classification will depend upon the
channel length / and the bounds L and L.

A special case is found when the wave amplitude tends to zero. In this case h,, and h,,
tend to the uniform flow solution S, from below and above respectively. By using the
cubic 2% - 2h* + Q% =0, which is satisfied by S, we have

L(S)=3A=—"—"7; (14)
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Figure 3. Plot of function L(h) as given by Eqn. (13).

where A, is the length of a wave of infinitesimal amplitude derived in [5} for this
shallow-water model. Clearly L_ = L,,= 1A, in this case. In general L < 1A, <Ly as
illustrated in Fig. 3.

THEOREM 2: Classification of stationary points of J for the shallow-water model with flat bed
and fixed end depths h(0), h(a):

(i) Any solution h(x) satisfying h(x) < h throughout [0, I} gives a minimum for J.

(ii) Any solution h(x) satisfying hq <h_, < h(x)< hy <1 for all x in [0, 1] gives a saddle
point for J on a channel of length | > L,,.
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(iii) Any solution h(x) as defined in (ii) gives a minimum for J on a channel of length
I<L,.
(iv) The stationary point h(x) as defined in (ii) is singular for some l in [L_, Ly}

In the above, a minimum means a weak or strong local minimum.

PROOF:

(1) Since condition (S1) is satisfied trivially only the strengthened Jacobi’s condition has
to be established. Thus we only need show that the solution of LV.P. (10) does not vanish
in (0, /].

From hypothesis h(x)< hy, for all x in [0, /] and therefore k(x)< 0 (property iii)
throughout the interval [0, /]. From the theory of differential equations, no nontrivial
solution of the equation U”(x)+ k(x)U = 0 has more than one zero in [0, /] and therefore
the solution to 1.V.P. (10) does not vanish in (0, L] (see [9]).

(i1) To prove that the solution #(x) as in the hypothesis of the theorem is a saddle point
for J when / is greater than L,, we only need show that #(x) is not a minimum (Theorem
1). To this end it is enough to show that the Jacobi’s necessary condition (N2) is not
satisfied i.e. that the solution to L.V.P. (10) has at least one zero in the open interval (0, /).

Since for all x in [0, /] h(x)> h, from property ii, it follows that k(x)> k(h,)
throughout [0, /]. Sturm’s Comparison Theorems then show that any solution of the
differential equation

U’'+k(x)U=0, x€][0,!]
must vanish between two successive zeros of the solution of the differential equation
U’'+k(h,)U=0, xe€[0,/]

and therefore vanishes in any interval [0, /] with I > 7/ \/k(h,) = Ly,.

(ii1) From the hypothesis of the theorem s(x) < Ay, for all x in [0, /]. Thus k(h(x)) <
k(hy,), from property iii.

Then the solution to L.V.P. (10) does not vanish anywhere in (0, L] when /<
w/k(hy) = L, by Sturm’s Comparison Theorem.

Therefore the strengthened Jacobi’s sufficient condition is satisfied and the result
follows.

(iv) The first zero of U(x) for positive x from (10) occurs at x =/ for some / in
[L,, Lyl then the second variation of J becomes zero [8] and therefore the solution #(x)
as defined in the hypothesis of the theorem is a singular point.

COROLLARY 1: Uniform flow solutions for 0 < 9 <8/217.

The uniform rapid solution S, is a minimum for J for all channel lengths. The tranquil
uniform solution S, is a saddle, singular or minimum point for J according as /> 3\, /
= 3Ag, OF / < 3, respectively.

The result follows immediately from Theorem 2 and observations on the function L(h)
illustrated in Fig. 3.

COROLLARY 2: The critical uniform solution.

The critical uniform solution 4(x)= % obtained when Q?=8/27 is a minimum for J
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for all channel lengths /. Note that this is for variations with fixed end points; variations
of uniform-flow type would give a singular point for J [12].

In this case A(x)=S, = S, = h, = % and therefore k(A (x))= 0. Then the result follows
from Theorem 2, part (i).

5. Related numerical computations

Some numerical computations were carried out in order to verify in practice some of the
theoretical predictions. As pointed out before, the theoretical results on the second
variation for the single-layer theory apply directly to the general case only in the region of
long waves, given the shallow-water type of approximation assumed in the model. In this
context we computed a large number of cases related to some particular theoretical
predictions. The algorithm NODE was used with one layer only [6].

The solution to be analysed is the tranquil uniform flow of depth S,. According to
Corollary 1 the nature of the solution is completely determined by the choice of channel
length / in the computations. There are three cases, namely

(1) 1> 34Xy =L(S,). S, gives a saddle point,

(i) = 3A,, S, is a singular point and
(iil) /< 3A,, S, gives a minimum.
In all three cases we took a range of twenty values for the asymptotic level S, from
S, = 0.8566666 (short-wave region) to S, = 0.6766666 (shallow water). The initial profile
in the computations was taken precisely as the horizontal flow of depth S,. This is
particularly important for case (il) where failure to compute the tranquil solution of
known depth S, can not be attributed to the initial profile.

The computations for all twenty prescribed values of the depth S, in case (ii) failed to
give the uniform flow of depth S,. Other profiles were instead computed which exhibited
small displacements at inlet and outlet. Also, computing time for this case (ii) was
unusually large in comparison with the other two cases.

For the computations of case (i) we took the channel length L to be 20% greater than
that of the singular case (ii), i.e. /=0.6A,. The computed results show that for all the
twenty prescribed values for S,, the uniform tranquil solution of depth =S, was
accurately computed. Moreover, computing time was only about 5% of that for example
(ii).

For case (iii) we took the channel length / to be 20% smaller than L(S,) = }A,, i.e.
[ = 0.4\ . The uniform tranquil flow of depth & = S, was accurately computed in all cases
and CPU time was slightly smaller than that of case (i).

Extensive numerical computations using the multilayer version of the present ap-
proximation [6] and a finite-element algorithm [3] confirm the previous observations.
Moreover, the theoretical predictions of the shallow-water model seem to extend to
deep-water flows. In this case the numerical ill-conditioning spreads to a neighbourhood
of 3A,. This is significant when computing non-linear water waves numerically, since they
may be approached through a set of solutions with wavelengths developing from A,.

6. Conclusions

We have concluded that, within the approximate shallow-water theory, only minima and
saddle points can occur, with or without singularity. This is true for any bed configuration
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(Theorem 1). Numerical experiments suggest that this may be the case for other flows not
governed by the shallow-water model. A reference depth 4, satisfying Q < S, < Q%> < h,,
<2/3 <8, <1 has been found so that every flow A(x) with h(x) < h, gives a minimum
(Theorem 2, i). This includes all possible rapid uniform flows S, up to the maximum and
flows converging to S, as x — cc. In addition, a range of wavy flows about S, are
classified as saddle points for channel lengths / greater than a reference length L, and as
minima for / less than another length L . The lengths L and L,, are associated with the
amplitude of each particular wave strictly above A,.

A reference wavelength A, has also been found in the process of analysis, which
corresponds to the case of infinitesimal amplitude. The three lengths L, L, and A
satisfy the relation L, < 3A, < Ly < o0. The classification of all flows above 4, has been
linked to the channel length /. The results of Theorem 2 show that for / in the interval
(0, L,,) the stationary point is a minimum; for / in (L, c0) the solution is a saddle point.
However, for / in the interval [L_, L,] we still do not know the nature of the stationary
point in general. However, the case of the uniform tranquil flow is a singular point for /
=X,

Numerical computations confirm the theoretical results and show that similar be-
haviour occurs outside the range of the shallow-water model. In particular computations
for uniform flows fail if the computational channel length is chosen to coincide with a
limiting wavelength, because the stationary point then becomes singular. Very-small-am-
plitude waves have been successfully computed by the authors but the convergence
becomes more difficult as they approach the uniform flow.
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